Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Rev. colomb. ciencias quim. farm ; 51(2)mayo-ago. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535835

ABSTRACT

Introducción: La termoquímica computacional es un campo de gran interés por sus diversas aplicaciones en diferentes campos de la química. En la actualidad, con el avance en el desarrollo de los supercomputadores se pueden emplear diversas metodologías que emplean cálculos de estructura electrónica para estimar valores termodinámicos con errores ~ 1,0 kcal/mol en comparación con los datos experimentales. Metodología: En este artículo se describen brevemente los principales métodos compuestos empleados en la termoquímica computacional como la serie de Petersson, los métodos Weizmann, el modelo HEAT y con especial énfasis en las teorías Gaussian-n. Aplicaciones: Diversas aplicaciones de la termoquímica computacional se presentan en este trabajo tales como el estudio de la reactividad y las estabilidades de nuevos derivados de compuestos químicos con potencialidades como fármacos, estudios de contaminantes en la química de la atmosfera donde se estiman valores importantes de entalpias de formación sobre compuestos derivados del gas de efecto invernadero SF6, estudios de compuestos derivados del petróleo de potencial importancia como nuevos combustibles y el desarrollo de explosivos con estimaciones energéticas de las entalpias de disociación de enlace y de combustión de nuevos compuestos orgánicos. Conclusiones: La termoquímica computacional es una herramienta actual para resolver problemas de la química donde la experimentación es difícil y con un alto costo económico. Se espera en un futuro que esta área desarrolle nuevos métodos y códigos computacionales que permitan estudiar sistemas moleculares de gran tamaño importantes en otras áreas de las ciencias como la física, la biología, ciencias de los materiales, entre otros.


Introdução: A termoquímica computacional é uma área de grande interesse devido às suas diversas aplicações em diferentes campos da química. Hoje em dia, com o avanço no desenvolvimento de supercomputadores, várias metodologias podem ser utilizadas que utilizam cálculos de estrutura eletrônica para estimar valores termodinâmicos com erros de ~ 1,0 kcal/mol em comparação com os dados experimentais. Metodologia: Este artigo descreve resumidamente os principais métodos compostos usados em termoquímica computacional, como a série Petersson, os métodos de Weizmann, o modelo HEAT e com especial ênfase nas teorias Gaussianas-n. Aplicações: Várias aplicações da termoquímica computacional são apresentadas neste trabalho tais como o estudo da reatividade e estabilidades de novos derivados de compostos químicos com potencial como drogas, estudos de poluentes em química atmosférica onde valores importantes de entalpias são estimados de treinamento em compostos derivados do gás de efeito estufa SF6, estudos de compostos derivados do petróleo com potencial importância como novos combustíveis e o desenvolvimento de explosivos com estimativas energéticas das entalpias de dissociação de ligações e combustão de novos compostos orgânicos. Conclusões: A termoquímica computacional é uma ferramenta atual para resolver problemas de química onde a experimentação é difícil e com alto custo econômico. Espera-se que no futuro esta área desenvolva novos métodos e códigos computacionais que permitam estudar grandes sistemas moleculares importantes em outras áreas da ciência como física, biologia, ciência dos materiais, entre outras.


SUMMARY Introductión: Computational thermochemistry is an area of great interest for its various applications in many different fields of chemistry. With the increase of the computational power readily available, it is currently possible to use various calculation based on the electronic structure methods for estimate thermodynamic properties with an error on the order of ~1.0 kcal/mol, which is comparable to experimental values. Methodology: In this work we briefly describe the main composite methods such as Petersson series, the Weizmann methods the HEAT model and with special focus on the Gaussian-n theories. Applications: Various applications of computational thermochemistry are presented in this work such as the study of reactivity and stabilities of new derivatives of chemical compounds with potential use as drugs, studies of pollutants in atmospheric chemistry where important values of enthalpies are estimated of training on compounds derived from the greenhouse gas SF6, studies of compounds derived from petroleum of potential importance as new fuels and the development of explosives with energy estimates of the enthalpies of bond dissociation and combustion of new organic compounds. Conclusions: Computational thermochemistry is a current tool to solve chemistry problems where experimentation is difficult and with a high economic cost. It is expected in the future that this area will develop new methods and computational codes that allow studying large molecular systems important in other areas of science such as physics, biology, materials science, among others.

2.
Org Biomol Chem ; 20(20): 4141-4154, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35521783

ABSTRACT

In this research the sequential generation and cyclization of N-alkoxyaminyl radicals to produce 1-azaspiro[4.4]nonane, a prominent scaffold in organic and medicinal chemistry, was studied. Competition experiments in benzene at 80 °C with brominated oxime ethers using Bu3SnH as chain transfer and AIBN as the initiator generated vinyl or aryl radicals which were captured by oxime ethers, allowing approximate 5-exo-trig cyclization constants at 4.6 × 108 s-1 and 9.9 × 108 s-1 respectively to be established. Similar results were obtained by kinetic studies using the transition state theory (TST) from ab initio calculations with density functional theory (DFT) using the M06-2X, B3LYP, mPW1PW91 and TPSSh functionals in combination with the 6-311+G(d, p) basis set. Additionally, it was found that the 5-exo-trig cyclization of the N-alkoxyaminyl radical onto CC double bonds is a reversible process whose constants were determined to be in the range of 6.2 × 100 s-1 and 3.5 × 106 s-1 at 80 °C, depending on the nature of the substituents. The calculation of the radical stabilization energy (RSE) shows that the N-alkoxyaminyl radical is a very stable species and its reactivity in the addition on alkenes is governed by its nucleophilic character and the stability of the carbon-centered radical formed after cyclization. The reduction constant of the N-alkoxyaminyl radical with Bu3SnH in the gas phase at 80 °C was also estimated to be 3.4 × 100 M-1 s-1 through computational calculations. This information facilitates the rational planning of cascades and other methodologies applied to the construction of carbocyclic and aza-heterocyclic compounds.


Subject(s)
Ethers , Models, Theoretical , Free Radicals/chemistry , Kinetics , Molecular Structure , Oximes
3.
Data Brief ; 38: 107350, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34522737

ABSTRACT

This article present the structural parameters and physicochemical data (ΣD 0, ΔH°f,298K and ΔG°f,298K ) of the methoxyformyl peroxynitrate CH3OC(O)O2NO2 (MoPAN), peroxypropionyl nitrate CH3CH2C(O)O2NO2 (PPN), peroxyacryloyl nitrate CH2CHC(O)O2NO2 (APAN), peroxy-n-butyryl nitrate CH3(CH2)2C(O)O2NO2 (PnBN), peroxycrotonyl nitrate CH3(CH=CH)C(O)O2NO2 (CPAN), peroxyisobutyryl nitrate (CH3)2CHC(O)O2NO2 (PiBN), peroxymethacryloyl nitrate CH2=C(CH3)C(O)O2NO2 (MPAN) and peroxy-n-valeryl nitrate CH3(CH2)3C(O)O2NO2 (PnVN) peroxyacyl nitrate derivatives. The equilibrium structures have been performed using the B3LYP and M06-2X functionals combined with the 6-311++G(3df,3pd) basis set. The physicochemical data were calculated using several Gn methods, G3B3, G3MP2B3, G4 and G4MP2. Computational calculations were carried out with GAUSSIAN09 program.

4.
Dalton Trans ; 44(7): 3020-33, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25569035

ABSTRACT

Several phenylthiolatomanganese carbonyl complexes of the type [(OC)4Mn(µ-SR)]2 (R = Ph (), C6H4-4-CH3 (), C6H4-4-CF3 (), C6H4-4-F (), C6H4-4-Cl (), C6H4-4-OMe (), C6F5 (), and CH2C6H4-4-Cl ()) have been prepared via the reaction of Mn2(CO)10 with diaryldisulfane or via the reaction of [(OC)5MnBr] with arylthiols. These complexes lose two carbon monoxide molecules quite easily yielding tetranuclear [(OC)3Mn(µ3-SR)]4 (). Derivatives with fluoro-substituted aryl groups commonly form mixtures of dinuclear and tetranuclear which can quantitatively be converted to by heating of the corresponding reaction mixtures. A unique trinuclear structure is found for the mesityl derivative [(OC)4Mn(µ-SMes)]3 () which is maintained in solution as verified by IR and NMR spectroscopy. Traces of an already known dinuclear by-product of the type [(OC)3Mn(µ-SC6H3(-4-Me)-2-SC6H4-4-Me)]2 () have been structurally characterized. The suitability of [(OC)4Mn(µ-SPh)]2 () as a CO releasing molecule (CORM) for the administration of carbon monoxide has been studied. Two CO molecules are released upon dissolving in strongly Lewis basic solvents L, yielding [(OC)3Mn(L)(µ-SPh)]2, which liberates all the remaining CO molecules upon irradiation (photoCORM behavior).


Subject(s)
Carbon Monoxide/metabolism , Manganese/metabolism , Organometallic Compounds/metabolism , Sulfhydryl Compounds/metabolism , Carbon Monoxide/chemistry , Crystallography, X-Ray , Manganese/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...